SYSTEMS ANALYSIS LECTURE 8 – SYSTEM BEHAVIOUR

Zuzana Bělinová

Behaviour

- Way of achieving goals
- Set of processes active within the System in specified time interval and in given state of the neighborhood

Process – sequence (chain) of events

State of the System – Set of actual states of Systems elements

Event – Change of the state of Systems element, or change of Systems structure or step of external time

Prerequisities

- Events are discreate, parameter changes are discreate
- Set of inputs is finite and distinguishable
- \rightarrow System state is finite

Behaviour

- Partial behavior (F_i) Set of processes activated for pre – defined (fixed) vector of Systems inputs (I_i)
- System behaviour

 $\mathsf{F} = \mathsf{U}_{\forall j} \, \mathsf{F}_i$

- Finding behaviour
 - Behaviour is usually analysed using model (System model, specialized e.g. DT, PN, etc.)
 - By experiments

How to describe process

- Path in the graph of the system
- Time of activation of elements
- Logical rules for choosing alternatives

Basic behaviour model

Just the processes

- Ways of recording the behaviour
 - Graph of vehaviour
 - Matrix of behavour
 - Set of processes

Graph of behaviour

System	Graph
state	node
event	edge
process	path

Using PN – transition diagram is the graph of behaviour

Matrix of behaviour

Adjacency matrix of the graph of partial behaviour

Di	s ⁱ 1	s ⁱ 2	•••	s ⁱ n
si ₁	di ₁₁	d ⁱ ₁₂		d ⁱ 1n
s ⁱ 2	d ⁱ 21	d ⁱ 22		d ⁱ 2n
•••				
s ⁱ n	d ⁱ n1	d ⁱ n2		di _{nn}

- $\Box \quad d^{i}_{j,k} = 0 \dots \text{ No transition } \quad s^{i}_{j} \rightarrow s^{i}_{k}$
- $\Box = 1 \dots \text{Transition} \qquad \mathbf{s}^{i}_{j} \rightarrow \mathbf{s}^{i}_{k}$
- □ sⁱ system states
- dⁱ events

Matrix of (partial) behaviour

	Preparing basic information	Approving at the rector's office	Archiving	Preparing the project	Printing and submitting the project
Preparing basic information	0	1	0	0	0
Approving at the rector's office	0	0	1	1	0
Archiving	0	0	0	0	0
Preparing the project	0	0	0	0	1
Printing and submitting the project	0	0	0	0	0

Standard behaviour matrix - SDi

- The same structure as behaviour matrix **Di**, but it is based on the whole system state
- There are not only the states active for particular input I, but also all other system states

Set of processes

All possible processes (paths)

- Example:
- F1:
- □ f11: Preparing basic information → Approving at the rector's office → Preparing the project → Printing and submitting the project
- □ f12: Preparing basic information \rightarrow Approving at the rector's office \rightarrow Not-approved archiving

System behaviour

Set of all behaviour graphs, or matrices D_i resp. SD_i of all sets of processes represents behavior F as a whole.

F= ∪∀i Fi

Example:

Basic behaviour model using a PN

M0=(1, 0, 0, 0, 0)

Example

Matrix of partial behaviour:

	P1	P2, P3	P4	P2, P5
P1	0	1	0	0
P2, P3	0	0	1	1
P4	0	0	0	0
P2, P5	0	0	0	0

□ $f11: P1 \rightarrow P2, P3 \rightarrow P4$ □ $f12: P1 \rightarrow P2, P3 \rightarrow P2, P5$

Set of processes:

F1:

Extended behaviour model

- It is dealing also with
 - Parameters of the relations and their values
 - Functions of elements
- Creation of extended behaviour model
 - Create the basic model
 - Add there the description of parameters and functions
 - Introduce the input values
- Usually it is solved for some interesting process e.g. the longest, shortest, etc.

Usage

- Analysis of time (duration of processes)
- Analysis of costs
- Analysis of reliability

Analysis of time

- There is time assigned to every element activation
- We assign the total duration time to the processes
- Search of process according requirements (typically the shortest one)

- f11: Preparing basic information → Approving at the rector's office →Preparing the project → Printing and submitting the project (7+3+5+1=16)
- □ f12: Preparing basic information \rightarrow Not approving at the rector's office (7+3=10)

Analysis of costs

- Cumulative
- Using source of assets
 - Real
 - Fictional

Analysis of reliability

(Probability of process realization)

- It is necessary to know the reliability of particular elements
- Serial arrangement

 $P = \Pi_{\forall i} p_i$ P - process reliability, p - reliability of elements

Parallel arrangement

P+Q=1, $q_i+p_i=1 \mid_{\forall i}$

 $Q=\prod_{\forall i} q_i$

P – process reliability, p – reliability of elements

 $Q-Probability \ of incorrect process run, <math display="inline">q-probability \ of$ elements malfunction

BE CAREFUL

The functional and topological arrangement may differ

Functionally serial!

Serial behaviour task

Linear sequence of states

$$\Box \ \mathsf{S}_1 \ \rightarrow \ \ \mathsf{S}_2 \ \rightarrow \ \ \mathsf{S}_3 \ \rightarrow \dots \rightarrow \ \ \mathsf{S}_n$$

Finding e.g.

- Regularity of interfaces
- Path lengths
- Agreeement of goals and the output parameters

□ ...

Parallel behaviour task

- More than one process are running at the same time
 more functions are activated
- Necessary to judge, if these processes are mutually dependent or not (e.g. Synchronous activation of the same element, using the same sources, etc.)
- If the processes are dependent, first analysis if there is a problem
- Solution
 - **Shifting in time**,
 - Changing condition for activation
 - Changing structure, etc.
- In the end, regularity needs to be checked

Example – using time diagrams for process dependance assessment

Example:

Processes in the system:

- I: $A \rightarrow B \rightarrow C$
- II: B→C

Duration of particular states:

State	Duration (days)
А	2
В	3
С	1

Possible solution in case of conflict:

Alternate behaviour task

- After one state alternatively more there one state can occure
- Decision using e.g. logical condition

Modelling uses

- Logical sentences / functions
- Sets of logical equations
- Decision tables (DT)
- Combination of Petri nets (PN) and tools mentioned above

Thank you for your attention