SYSTEMS ANALYSIS LECTURE 7 TOOLS

Zuzana Bělinová

Lecture overview

- Decision tables
- Cluster analysis
- Graph transmission

Decision tables

Decision tables

- Tool for modeling sets of logical terms
- Similar to if-then rules
- Work with several conditions at the same time
- Advantages
 - Possibility of modelling complex alternative processes
 - Suitable for algorithms with many decisions
 - Easily computerized

Decision tables - structure

4 quadrants

List of conditions	Combinations of conditions
List of actions	Combination of actions

- DTs describe which actions are to be done under particular combination of conditions
- In the "Combination of conditions" quadrant different possible combinations of conditions are stated and to each combination there are in the appropriate column in the quadrant "combination of actions" - markes actions to be done

Decision tables - creating

- 1. Identify conditions and their values
- 2. Identify possible actions
- 3. Enter combinations of conditions
- 4. Define actions for each combination of conditions
- 5. Verify the table and if possible, simplify the table

Example

DS: Should I attend the lecture?				
Was the last lecture useful?	0	0	1	1
Do I have other duties?	0	1	0	1
Stay home and do nothing	1	0	0	0
Work on other duties	0	1	0	1
Attend the lecture	0	0	1	1

One combination can have more actions
 One action can be done for more combinations of conditions

Types of decision tables

According the inputs

- With limited-entry (binary input)
- With extended entry (each condition has more possible results)
 - It is possible to put down the different values (intervals) in the combinations of conditions
 - Or every condition in the first quadrant has as many formulations, as there are possible inputs
- With mixed inputs

Example – table with extended entry

DS: Evening activity				
How much many I have at disposal?	<50	50-200	200-500	>500
Stay at home	1	0	0	0
Go to pub	0	1	0	1
Go to a theater	0	0	1	0
Invite friends	0	0	0	1

DS: Evening activity				
l have at disposal <50 Kč	1	0	0	0
l have at disposal 50-200 Kč	0	1	0	0
l have at disposal 200-500 Kč	0	0	1	0
l have at disposal >500 Kč	0	0	0	1
Stay at home	1	0	0	0
Go to pub	0	1	0	1
Go to a theater	0	0	1	0
Invite friends	0	0	0	1

Example – table with contradictory entry

□ e.g. choosing signal plan for traffic control

Day: public holiday	1	0	0	0	 0
Monday	-	1			
Tuesday	-		1		
Wednesday	-			1	
	-				
Sunday	-				
Use signal plan A	1				
В		1			
С			1	1	

Types of decision tables

According cohesion with other DT

- Open there are more DT connected (using links from one to another)
- Closed one self-sustaining table
- Full tables with limited binary entry, number of rules is 2ⁿ
 - More often there are less rules because of redundancy or contradictory

Example – open table

0	0	1	1
0	1	0	1
1	0	0	0
0	1	0	0
0	1	0	0
0	1	0	0
0	1	1	1
	0 0 1 0 0 0	0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1	0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1

DT 2		
Have you received the SMS ticket?	0	1
Wait - Repeat DT 2	1	C
Return to DT1 and continue	0	1

Cluster analysis

Cluster Analysis - CA

- Method for clustering similar objects
- Combines mathematical and expert attitudes
- Usage in the Systems analysis, e.g.
 - System identification
 - Semantic decompositon

Example for 2D position

Typical procedure

- Choice of objects (elements) objektů / prvků
- Choice of measured characteristices and assignment of weights to these characteristices
- Choice of measure of similarity of elements metrics
- Choice of clustering method
- If needed, determination of number of clusters(either based on expertise or using full hierarchical analysis and setting of rules for choice of optimal level)
- Calculation
- Results interpretation

Cluster analysis methods

- E.g.:
 K-means
 ISODATA
 - ••••

Graph transmission – Mason-Truxal rules

Graph transmission

- Procedure of transferring of system of linear equation into a graph (the system matrix must be partially empty) – izomorfism between oriented graph and system of linear equations
- It serves for simple solving of system transmission (proportion of output and input $(x_i \rightarrow x_j)$)

Graph transmission

Usage

- regulaion
- Control technique
- Cybernetics
- Topological or algebraical form

Topological form – Mason-Truxal rules

How to transfer the equations into graph

 \Box Z=a^{*}X

x, y, z – variables a, b - constants

□ z=a*x+b*y

The Mason-Truxal rules I

Faculty of Transportation n Sciences

The Mason-Truxal rules II

С

Feedback rules - deduction

x2=a*x1+b*x2 x1
 x2=a*x1+b*x2 x2-b*x2=a*x1

 $\square x2/x1=a/(1-b)$

Example

Verification

$$x_2 = \frac{a \cdot x_1}{1 - b}$$

$$x_{3} = c * \frac{a * x_{1}}{1 - b} + d * x_{1}$$
$$\frac{x_{3}}{x_{1}} = \frac{a * c}{1 - b} + d$$

Graph transition - terms

- Path continuous succession of branches, no node is encountered more than once
- Loop simple closed path,
- Self loop loop with no other node than the origin=destination node

Graph transmission – basic rules

- Path transmission = product (multiplication) of all branch transmissions along a single path
- Transmission of parallel paths = sum of the path trnasmissions of all the possible paths between two nodes
- Absorbing node (not a loop node) it must be included in all the direct paths going through it
- Absorbing several self-loops of one node into one – sum of the self-loops
- Absorbing self-loop with transmission b transmission of every incoming branch is divided by (1-b)

Graph transmission – procedure

- Absorbing nodes with just one input or output
- Absorbing all paralel branches (with the same orientation)
- Absorbing self-loops
- Absorbing loop node all direct and self paths must going through the node must be assessed

References

Graph transmission

 D. Eppinger Murthy V. Nukala Daniel E. Whitney: Generalized Models of Design Iteration Using Signal Flow Graphs Steven. MIT, Sloan School of Management, 1996. Accesible from: <u>https://core.ac.uk/download/pdf/4380258.pdf</u> (04/2019)